Step of Proof: eta_conv |
12,41 |
|
Inference at *
Iof proof for Lemma eta conv:
A, B:Type, f:(A
B). (
x.f(x)) = f
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C)) (first_tok :t) inil_term)))
C1:
C1: 1. A : Type
C1: 2. B : Type
C1: 3. f : A
B
C1:
(
x.f(x)) = f
C.